Diffusion-induced instability and chaos in random oscillator networks.
نویسندگان
چکیده
We demonstrate that diffusively coupled limit-cycle oscillators on random networks can exhibit various complex dynamical patterns. Reducing the system to a network analog of the complex Ginzburg-Landau equation, we argue that uniform oscillations can be linearly unstable with respect to spontaneous phase modulations due to diffusional coupling-the effect corresponding to the Benjamin-Feir instability in continuous media. Numerical investigations under this instability in random scale-free networks reveal a wealth of complex dynamical regimes, including partial amplitude death, clustering, and chaos. A dynamic mean-field theory explaining different kinds of nonlinear dynamics is constructed.
منابع مشابه
Frequency–driven chaos in the electrical circuit of Duffing-Holmes oscillator and its control
Accurate detection of weak periodic signals within noise and possibility of secure messaging have made Duffing oscillator (DO) highly important in the field of communication. Investigation on the properties of DO is thus ardently sought for. An elegant approach to accomplish the same is to fabricate electronic circuit simulating DO non-linear equation and to study the effect of input signal amp...
متن کاملNetworks on the edge of chaos: global feedback control of turbulence in oscillator networks.
Random networks of coupled phase oscillators with phase shifts in the interaction functions are considered. In such systems, extensive chaos (turbulence) is observed in a wide range of parameters. We show that, by introducing global feedback, the turbulence can be suppressed and a transition to synchronous oscillations can be induced. Our attention is focused on the transition scenario and the ...
متن کاملHybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملFrustration induced oscillator death on networks.
An array of identical maps with Ising symmetry, with both positive and negative couplings, is studied. We divide the maps into two groups, with positive intra-group couplings and negative inter-group couplings. This leads to antisynchronization between the two groups which have the same stability properties as the synchronized state. Introducing a certain degree of randomness in signs of these ...
متن کاملهمگامسازی در مدل کوراموتو روی شبکههای پیچیده با توزیع فرکانس ذاتی دوقلهای
In this work, we study the Kuramoto model on scale-free, random and small-world networks with bimodal intrinsic frequency distributions. We consider two models: in one of them, the coupling constant of the ith oscillator is independent of the number of oscillators with which the oscillator interacts, and in the other one the coupling constant is renormalized with the number of oscillators with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2009